Annual Report ERNDIM-EQAS Quantitative Organic Acids 2003

1. Purpose

The purpose of the ERNDIM External Quality Assurance Scheme for Quantitative Organic Acids is the monitoring of the analytical performance of the quantitative assay of organic acids in urine in laboratories involved in the diagnosis and follow-up of patients with inherited metabolic disorders. For detailed information see www.ERNDIMQA.nl

Gewijzigde veldcode

2. Participants

56 Laboratories from 18 countries participated in the Scheme. This is still far away from the 130 or so labs which take part in the qualitative OA Scheme

3. Design

The Scheme has been designed, planned and coordinated by Dr. Cas Weykamp as scheme organiser and Dr. Ries Duran as scientific advisor, appointed by the ERNDIM Board. The design includes samples and reports which are connected to provide information with a balance between short-term and long term-reports and between detailed and aggregated information.

Samples

The scheme of the year 2003 consisted of 8 lyophilised samples, all prepared from the same basic human urine but with various amounts of added analyte. The samples were identical two by two: the pairs, along with the added amounts of analyte and their source are in the table below.

Pairs, added amounts (in micromol/L) of organic acids and their source

Analyte	Source	Added to	Added to	Added to	Added to
·		Pair 94-98	Pair 93-99	Pair 95-97	Pair96-100
Citrate	Sigma C3434	0	3641	2185	1092
Glutarate	Sigma G4126	0	90	45	299
Suberate	Sigma S7126	0	45	90	1496
Hexanoylglycine	EMC R'dam	0	72	43	22
Suberylglycine	EMC R'dam	0	147	88	44
3OH Butyrate	Sigma H3145	0	268	538	8948
3OH Propionate	Brunet	0	54	538	108
3 Methylglutarate	Sigma M1512	0	144	86	43
Methylmalonate	Sigma M2633	0	599	5994	1199
Tiglylglycine	EMC R'dam	0	264	106	53
3OH Isovalerate	Brunet	0	415	166	83
Isovalerylglycine	EMC R'dam	0	180	90	600
Glycolate	Sigma G8284	0	480	192	96
4OHPhenylacetate	Sigma H4377	0	1052	631	315
Methylsuccinate	Sigma M1644	0	526	210	105
Ethylmalonate	Sigma E8758	0	29	293	59
20H Glutarate	Sigma H8253	0	447	179	90

Reports

All data-transfer, the introduction of data by the subscribers (methods, results) as well as their request of reports was done via the interactive website www.erndimqa.nl.

The website supplies short-term and long-term reports. Short-term reports are associated with the eight individual specimens, for which a specific deadline has previously been established for each . Two weeks after the respective deadlines participants can request their reports and thus can update the information on their analytical performance. Although technically not required, a delay time of 14 days has been arbitrarily chosen to enable the scientific advisor to inspect the results and add his comment to the report. In contrast to the rapidly available short-term reports the annual long-term report is based on the designed connection between samples — as described above - which enables to report a range of analytical parameters (accuracy, precision, linearity, recovery and inter-laboratory dispersion) once an annual cycle has been completed.

Another characteristic of the website is the variety of result presentations which allows laboratories to make an individual choice for detailed and/or aggregated reports. The most detailed report which can be requested from the website is the "Analyte in Detail" which shows results of a specific analyte in a specific sample (136 such Analyte-in-Detail-reports could be consulted in the 2003 cycle). A more condensed report is the "Cycle Review" which summarizes the performance of all analytes in a specific sample (8 such Cycle-Review-Reports were available in 2003). The highest degree of aggregation is the Annual Report which summarizes the performance of all analytes of all 8 samples. Depending on the information one wants to obtain one can choose to have a glance at only the annual report (e.g. laboratory managers) or study all 136 detailed reports (person in charge of the workplace, technicians).

4. Discussion of Results in the Annual Report 2003

Subsequently we present accuracy, recovery, precision, linearity, interlab CV and cross sectional relations. It may be helpful to print your results of the annual report from the Interactive Website before reading the following comments and keep in mind that we only discuss the results of all labs in general: it is up to you to inspect and interpret the specific results of your laboratory and - where needed – to investigate the cause of unsatisfactory results and to correct the procedure.

Whenever serious problems are encountered, contact may be made with your National Representative or eventually with the Scientific Advisor.

4.1 Accuracy

A first approach to describe accuracy is to compare the mean outcome in the eight samples in your lab with the mean in all labs. This is shown in the column "Your Lab" and "All labs" under the heading "Accuracy".

Gewijzigde veldcode

4.2 Recovery

A second approach to describe accuracy is the percentage recovery of added analyte. In this approach it is assumed that the recovery of the weighed quantities is the target value. The correlation between weighed quantities as added to the samples (on the x-axis) and the measured quantities (on the y-axis) have been calculated. The slope of the correlation multiplied with 100% is the recovery of the added amounts. The column "Recovery" shows your recovery in the respective organic acids in comparison to the median recovery of all laboratories. The median recovery ranges from 69% (Citric acid) to 141% (3-OH-Propionic acid). The overall mean recovery is 93%. Conclusions from aggregated data are generalisations which should render the participants to the QC-programs (and even more the end- users of the data) cautious about utilizing data from other labs without asking about proof of reliability. The difficulties we face are certainly a challenge for developing improved methods.

4.2.1 Precision

Reproducibility is an important parameter for quality in the laboratory especially for the follow-up of patients. The CV is calculated from the pairs of the scheme which can be regarded as duplicates (Intra Laboratory CV as indicator for reproducibility). Since there are only four pairs, the calculated precision can only give an indication about the reproducibility of the individual laboratory. It allows, however, comparison of the individual performance with that of the other participants. The results in comparison to the median of all labs is shown in the column "Precision" of the Annual Report. Precision ranges from an excellent 2.6% for creatinine to a poor 36.1% for 3-OH-Isovaleric acid with an overall intra-lab CV of 19.2%.

4.2.2 Linearity

Linearity over the whole relevant analytical range is another important parameter for analytical quality. The regression has been calculated taking the final concentration of the addition as independent (x) variable and the measured concentrations as the dependent (=y). The regression coefficient r of the individual and the median of all labs are shown in the columns "Linearity" of the annual report. It can be seen that the coefficients of regression range from 0.9026 for citric acid to 0.9993 for suberic acid.

4.2.3 Interlab CV

For comparison of outcome for one patient in different hospitals and for use of shared reference values it is relevant to have a high degree of harmonization between results of various laboratories. Part of the scheme design is to monitor this by calculating the Interlaboratory CV. This, along with the number of laboratories who submitted results, is shown in the column "Data All labs" in the Annual report. It can be seen that most laboratories submitted results for methylmalonic acid (55) whereas only 40 participated for suberylglycine. The Inter-lab CV ranges from 7.3% for creatinine to 272.5 for hexanoylglycine.

4.2.4 Cross Sectional Relations

The various parameters as described above often have an interrelation: often more than one parameter directs towards good or bad analytical control. This pattern is not clearly seen in the organic acids scheme.

5 Conclusions & Summary

An mean interlab CV of 72.4% demonstrates clearly the major problem in the analysis of organic acids: lack of standardization. Precision with a mean CV of 19.2% is much better indicating that reproducibility within the labs is not too bad. Linearity is also no major problem and recovery is also quite acceptable.

6 Preview Scheme 2004

There will be no major changes in the 2004 scheme.

7 Questions, Comments and Suggestions

If you have any questions, comments or suggestions, please address to the scientific advisor of the scheme Dr. Ries Duran (<u>m.duran@amc.uva.nl</u>) and/or the scheme organiser Dr. Cas Weykamp (<u>c.w.weykamp@skbwinterswijk.nl</u>).

Alternatively you may approach your local National Representative, a list of which is available from ERNDIM.